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Large clusters in supercritical percolation

P. S. Grinchuk
A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Street, Minsk 220072, B

~Received 11 October 2001; revised manuscript received 26 April 2002; published 25 July 2002!

The statistical behavior of the size of large finite clusters in supercritical percolation on a finite lattice is
investigated~below the critical dimension of the spacedc56). For this purpose, an approximate system of
ordinary differential equations for a number of finite clusters is obtained. The correlation between the critical
exponentsz that determine the cluster decay law (lnn s;2sz) and the surface of clusters is shown. It is found
that for clusters without self-intersections having a maximal surfacez51. For clusters with a small number of
self-intersectionsz512h. Hereh is a function depending on the ratio of the surface area of a cluster to its
size, which tends to zero, when the surface tends to a maximum. For compact clusters with a minimum or
near-minimum surface area, the first correction to the cluster decay law above percolation threshold (lnns;
2s(d21)/d) has been found on the basis of the drop model and the derived system of equations. The predictions
are tested numerically on two- and three-dimensional lattices by Monte Carlo simulations. The results of the
work allow one to conclude that above the percolation threshold majority of large clusters are compact and that
the cluster surface is the main factor affecting its behavior in supercritical percolation.

DOI: 10.1103/PhysRevE.66.016124 PACS number~s!: 64.60.Ak, 02.50.2r
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I. INTRODUCTION

Percolation is a standard model for structurally disorde
systems. Among numerous areas of its application are p
mer gelation, epidemic diseases of garden trees, flows in
rous media, hopping conduction in semiconductors,
@1,2#. Recently this theory has also been applied to desc
ing social and economic phenomena@3,4#.

Among the problems of the percolation theory, the s
called cluster size distribution is of major importance. Ma
properties of percolative systems can be found by mean
this distribution. Typical examples are magnetic suscepti
ity and the contribution of an external magnetic field to h
capacity of spin glasses@5#, magnetization density for diluted
ferromagnets@6#, susceptibility of a liquid-porous solid sys
tem @7#, optical absorption edge for diamondlike carbon@8#,
geometry of the localized wave function in the integer qu
tum Hall effect@9#, etc.

Since the cluster numbersns(p) are known exactly fors
<10 @10#, this problem may be thought as solved forp far
from pc , because in this case there is a small quantity
large clusters. The study of this problem in the neighborho
of the percolation threshold is of the greatest interest. In
of the recent works@11# this problem was considered in de
tail below the percolation threshold. Above the percolat
threshold, the so-called infinite cluster~IC! is of primary
importance for the system behavior. However, in superc
cal percolation large finite clusters still exist. Unfortunate
a phenomenological approach dominates up to date in
study of these clusters. Therefore, the development of th
retical and numerical methods for investigating such clus
is an urgent problem.

In this paper, we find an approximate system of ordin
differential equations for a number of finite clusters and
ply it to investigate the behavior of large finite clusters abo
the percolation threshold forup2pcu!1, i.e., for supercriti-
cal percolation. The proposed approach allows us to obta
refined law of cluster size distribution in supercritical perc
1063-651X/2002/66~1!/016124~7!/$20.00 66 0161
d
y-
o-
c.
b-

-

of
l-
t

-

f
d
e

n

i-
,
he
o-
rs

y
-
e

a
-

lation on the basis of more rigorous considerations and a
to trace the role of the cluster surface in this law.

II. A SYSTEM OF ORDINARY DIFFERENTIAL
EQUATIONS FOR A NUMBER OF FINITE CLUSTERS

The site problem on a periodic lattice ofN sites embedded
in the space of subcritical dimensiond,dc56 is considered.

We deal with an ensemble of percolation systems t
includes a set of systems~lattices! with all possible values of
a site occupation probabilityp from 0 to 1. A change inp and
a related variation of the system properties is described
terms of a transition from a subensemble of the syste
where a site occupation probability isp ~subensemble$p%) to
a subensemble wherein this probability is larger by an infi
tesimal quantitydp ~subensemble$p1dp%). We note that all
the values related to both finite clusters and the infinite o
are considered as average with respect to the correspon
subensemble.

Further, we will use the fact that with increase in a s
occupation probability, the cluster cannot break into sma
ones~the occupied site cannot become nonoccupied!. An im-
portant consequence is that with increasingp ~random addi-
tion of occupied sites to the lattice! larger-size clusters can
be formed only from clusters of smaller sizes by their agg
gation. Using this fact, after simple calculations we obta
the conditional probability for the transition of an arbitra
nonoccupiedsite to an occupied one,

P15
dp

12p
. ~1!

Taking into account only the processes of the first orde
dp, we have two different ways for the new cluster form
tion. An arbitrarys cluster~cluster ofs sites! is formed either
as a result of association of two smaller-size clusters suc
s11s2115s ~the first way! or from a (s21) cluster when
©2002 The American Physical Society24-1
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P. S. GRINCHUK PHYSICAL REVIEW E66, 016124 ~2002!
one vacant site belonging to the perimeter of this clus
becomes occupied~the second way!.

Let us consider the first way in detail. We deal with tw
subensembles of percolation systems:$p% and $p1dp%. The
s cluster is formed on an arbitrary site of the system if t
following set of conditions is fulfilled: the given site is non
occupied@probability (12p)#; one of the neighboring site
has been ‘‘wetted’’ with as1 cluster @probability s1ns1

(p),

wherens1
(p) is the number ofs1 clusters per site#, another

neighboring site has been ‘‘wetted’’ with as2 cluster@prob-
ability s2ns2

(p)#, with increasing the fraction of occupie

sites ~transition from$p% to the $p1dp% subensemble! the
considered site becomes occupied@the conditional probabil-
ity according to Eq.~1!#.

Moreover, two given clusters placed in neighboring si
should not intersect with each other nor with any third clu
ter. We introduce a combinatorial functiongs1s2

(p) by means
of which we take into account the above circumstances. T
function is defined as a number of mutual arrangement
all cluster pairs of sizess1 ands2 at two sites neighboring to
an arbitrary nonoccupied site of the considered lattice w
the clusters do not intersect with each other nor with a
third cluster. The number of this arrangements is avera
over all sites of these clusters and over all sites of the latt
Then, the following expression can be written for the pro
ability of s-cluster formation at an arbitrary site of the lattic
through the first way:

Ps
(11)52 (

s11s2115s
gs1s2

~p!s1ns1
~p!s2ns2

~p!dp. ~2!

Here factor 2 appears because wetting of each of these
sites with aforementioned clusters is equivalent.

An important detail should be outlined. As can be se
the formation of as cluster through the first way will be
possible if not one, but for example, three neighboring s
near the considered site belong to the sames1 cluster. This
and similar situations are taken into account by means of
functionsgs1s2

(p).
By analogy with Eq. ~2!, for the probability of the

s-cluster formation through the second way, we can write

Ps
(21)'2~s21!ns21~p!~12p!z21dp. ~3!

Herez is the coordination number of the lattice. We note th
in Eq. ~3! only the most essential term is retained; the sit
tions in which two and more sites nearest to the nonoccup
site belong to the (s21) cluster are neglected since the
probability is proportional to@(s21)ns21(p)#m where m
52,3, . . . ,z and (s21)ns21(p)!1.

A decrease in the number of thes clusters is possible
owing to the joining of these clusters with any finite clus
or a single site belonging to the perimeter of thes cluster.
This is also possible due to the attachment of thes cluster to
the IC. The probabilities of a decrease in the number of ths
clusters via three aforementioned ways are, correspondin
the following:
01612
r

s
-

is
of

n
y
d

e.
-

wo

,

s

e

t
-
d

r

ly,

Ps
(12)52sns~p! (

s351

`

gss3
~p!s3ns3

~p!dp, ~4!

Ps
(22)'2sns~p!~12p!z21dp, ~5!

Ps
(32)52sns~p!g~s,p!P~p!dp. ~6!

Here P(p) is the density of IC or the part of the sites b
longing to an IC andg(s,p) is the combinatorial function for
a finite and an infinite clusters.

As the next step, the following balance relationship can
written:

Nns~p1dp!2Nns~p!5N@Ps
(11)1Ps

(21)

2Ps
(12)2Ps

(22)2Ps
(32)#. ~7!

After simple mathematical transformations in the lim
dp→0 we find the system of ordinary differential equatio
for the number of finite clusters,

dns

dp
'2 (

s11s2115s
@gs1s2

~p!s1ns1
~p!s2ns2

~p!#

12~12p!z21~s21!ns21~p!

22snsH (
s351

`

@gss3
~p!s3ns3

~p!#1~12p!z21

1g~s,p!P~p!J . ~8!

The developed approach can be applied to an infinite c
ter. This will permit us to obtain some information abo
functiong(s,p). We emphasize that with increasing the fra
tion of the occupied sites, an increase in the fraction of s
belonging to IC and not the formation of new ICs occu
With account for the first-order processes indp, there are
two different ways of increasing the IC density:~i! joining of
an arbitrary finite cluster to IC and~ii ! joining of one of the
sites along the IC perimeter. When as cluster joins IC, the IC
density increases by (s11)/N. We find, by analogy with Eq.
~8!, the following equation for IC:

dP

dp
'2P~p!F(

$s%
g~s,p!~s11!sns~p!1~12p!z21G .

~9!

The correlation length tends to infinity at the percolati
threshold. This means that the macroscopic parameters o
system in the vicinity of the percolation threshold becom
independent of any spatial characteristics. In this case,
important that such small-scale properties of the system
the structure of finite clusters have no substantial effect
the behavior of the system, in particular, on IC. Therefo
we suppose that in the vicinity of the percolation thresh
the IC structure is important, first of all, for the functio
g(s,p) and this function has only a weak dependence on
4-2
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LARGE CLUSTERS IN SUPERCRITICAL PERCOLATION PHYSICAL REVIEW E66, 016124 ~2002!
properties of finite clusters. This means thatg(s,p) can be
factorized near the percolation threshold,

g~s,p!'g1~s!g2~p!, ~10!

and g1(s) depends only slightly ons. Here g1(s) corre-
sponds to the layout of the finite cluster andg2(p) to the IC
layout.

As limp→pc10g(s,p)50, we suppose that the followin
power law is valid:

g2~p!}~p2pc!
l. ~11!

Then, taking into account Eqs.~10! and~11!, we conclude
that in the vicinity of the percolation threshold (up2pcu
!1) on the right-hand side of Eq.~9! the term($s%s

2ns(p)
}(p2pc)

2g dominates, whereg is the mean cluster siz
exponent. Then, for the IC density from Eq.~9! we have

dP

dp
}P~p!~p2pc!

l2g. ~12!

This equation has three qualitatively different solutio
corresponding to the casesl,g21, l5g21, and l.g
21. The correct power-law-like solution@P(p)}(p2pc)

b#
is obtained only withl5g21. For g2(p) in this case, we
find

g2~p!}~p2pc!
g21. ~13!

Next, consider the behavior of finite large clusters abo
the percolation threshold forup2pcu!1 with the aid of the
system of equations~8! and relations~10! and ~13!.

III. STATEMENT OF THE PROBLEM

Let us consider a situation in the vicinity of the perco
tion threshold above the latter, i.e., the case of supercrit
percolation. As the first approximation, we suppose that
change in the number ofs clusters in supercritical percola
tion is determined only by the ‘‘interaction’’ ofs clusters
with the infinite cluster. According to Eq.~8! it means that
for determining the cluster size distribution, the followin
equation will be solved:

dns

dp
'22sns~p!g~s,p!P~p!. ~14!

It should be noted that a solution is sought in the limit
larges values. The boundary condition for Eq.~14! should be
set in a percolation threshold. It is known thatns in the
percolation threshold behaves as follows@12,13#:

nsup5pc
5Cs2t, ~15!

wheret is the Fisher exponent@1,14# andC is the constant
independent ofs. It should be noted that the power law~15!
holds for clusters of a linear extentRS!j, wherej is the
correlation length. Using Eq.~15! as boundary condition fo
large clusters is justified because near the percolation thr
01612
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old j is also very large. For the density of IC near the thre
old, the well-known scaling relation can be used

P~p!'Cp~p2pc!
b. ~16!

The main problem consists in the determination of t
form of the functiong(s,p). This will be made below.

IV. COMBINATORIAL FUNCTION AND THE CLUSTER
SIZE DISTRIBUTION IN SUPERCRITICAL

PERCOLATION

A. Basic relationship for g1„s…

Turning to the definition of functiong(s,p), we can write
the following relationship:

g~s,p!5
ā1

(s)1ā2
(s)1•••1ās

(s)

s

'g2~p!
a1

(s)1a2
(s)1•••1as

(s)

s
. ~17!

Hereām
(s) is the number of possible allocations of thes clus-

ter near a site belonging to the IC perimeter, which is av
aged over all the IC perimeter sites provided that thes cluster
does not intersect with IC nor with any third cluster. In ca
culatingām

(s) , it is necessary to displace thes cluster over the
lattice so that itsmth site (m51, . . . ,s) will be a nearest
neighbor to a site belonging to the IC perimeter.

Since the dependency ofg(s,p) on s andp in the consid-
ered case separates, further we can deal only with theam

(s)

values.
For the (s11) cluster, it is possible to write

g1~s11!5
a1

(s11)1a2
(s11)1•••1as11

(s11)

s11
. ~18!

It is obvious that the following relationship should be sa
isfied:

am
(s11)5am

(s)2um
(s11) , ~19!

wherem51,2, . . . ,s andum
(s11) is the decrease in the ave

age number of possible allocations of thes cluster in the
neighborhood of IC whens-cluster size is increased by 1
Relation~19! reflects the fact that certain combinations of t
mutual allocations of the finite and infinite clusters, whi
were possible earlier, become prohibited because the
added to thes-cluster will superimpose on the sites alrea
occupied by other clusters.

Substituting Eq.~19! into Eq. ~18!, we obtain the basic
relationship forg1(s):

g1~s11!5
a1

(s)2u1
(s11)1•••1as

(s)2us
(s11)1as11

(s11)

s11

s

s

5g1~s!
s

s11
1

as11
(s11)

s11
2

u

s11
. ~20!
4-3
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Here u5((m51
s um

(s)) is the total decrease in the number
possible allocations of thes cluster in the neighborhood o
IC with increasing the size of the former by 1.

To estimate the order of magnitude ofu, simple numerical
simulation has been carried out. A two-dimensional~2D!
square lattice is filled with occupied sites in a random w
with a prescribed probabilityp(up2pcu!1). An infinite
~percolation! cluster is found on the lattice and is labeled.
sufficiently large finite cluster of a given size is generated
another~unoccupied! lattice. After that, each site of this clus
ter is placed successively onto vacant sites adjacent to
perimeter sites of IC~rotations of a finite cluster were als
considered!. Thus, all sites of the IC perimeter have be
traced. The number of combinations when the finite clus
completely lies on empty sites of the lattice has been ca
lated. Further, one site is randomly added to this cluster,
all the operations are repeated once again with the same
This allows us to estimate the values of botham

(s11) and
um

(s11) . From the results of simulation it follows that~i!
uam

(s11)u@uum
(s11)u and~ii ! for s@1 the value ofu practically

does not depend ons. These results will be used below.
We consider two qualitatively different cases: cluste

with a small number of self-intersections~noncompact! and
compact clusters, i.e., the clusters with a minimal possi
or close to a minimal, surface at a given cluster size. T
examples of compact and noncompact clusters for the cas
a honeycomb lattice are presented in Fig. 1.

B. Clusters without self-intersections

First of all, we consider a simpler case of clusters witho
self-intersections. Here, each site of a cluster makes app
mately identical contribution to the functiong1(s11). It
means that

a1
(s11)'a2

(s11)'•••'as
(s11)'as11

(s11) . ~21!

From Eqs.~18! and ~21! it follows that for noncompact
clusters the relationshipas11

(s11)'g1(s11) is valid. Substi-
tuting this relationship into Eq.~20! and performing simple
mathematical transformations, we obtain the following eq
tion:

FIG. 1. Examples of compact~left! and noncompact~right! clus-
ters for the honeycomb lattice.
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g1~s11!2g1~s!'2
u

s
. ~22!

Expanding the functiong1(s11) into the Taylor series in the
neighborhood ofs (s@1) , we derive the ordinary differen
tial equation:

dg1~s!

ds
'2

u

s
. ~23!

In this case, the boundary condition for functiong1(s)
must be written on the ‘‘right boundary,’’ i.e., fors→`. For
compact clusters, the boundary condition takes the form

g1us5`50. ~24!

It means that a very large compact cluster cannot be pla
adjacent to IC. In the case of noncompact clusters, the la
assertion is controversial. Therefore, the boundary condi
for such clusters is written as follows:

g1us5s0
5C0 . ~25!

Formula~25! can be interpreted as a boundary condition
finite clusters of a maximal size, i.e., ifs.s0, then g1(s)
50. This means that ifs.s0, such a cluster on the give
lattice is an infinite one. It should be noted that generallys0
depends on the lattice size. Here, exact numerical values
s0 and C0 are of no significance. It is important only tha
these values are positive.

Returning to Eq.~23!, we write its solution with boundary
condition ~25!:

g1~s!'C01 lnS s0

s D u

. ~26!

Substituting Eqs.~10!, ~13!, ~16!, and~26! into Eq. ~14! and
taking into account the boundary condition~15!, we obtain
the following expression forns(p):

ns~p!'C1s2t expS 2
s

sj
D $11O~s2u!%, ~27!

whereC1 is constant and

sj;~p2pc!
2(g1b). ~28!

The quantitysj in Eq. ~27! is known as the ‘‘crossove
size’’ @1,11#. Since large clusters are fractal objects, t
crossover size and the correlation lengthj are related assj

}jD, where D is the fractal dimension of the IC forp
5pc . Since the correlation length near the percolati
threshold behaves asj}(p2pc)

2n, the following expression
for D from Eq. ~28! is obtained:D5(g1b)/n. This is a
well-known result@1,15#. We note that the case of cluste
without self-intersections formally corresponds to the Be
lattices. Then it follows from Eq.~27! that we have obtained
a correct critical exponent for these latticesz51 @1#.
4-4
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LARGE CLUSTERS IN SUPERCRITICAL PERCOLATION PHYSICAL REVIEW E66, 016124 ~2002!
C. Cluster with a small number of self-intersections

Now let us consider the case of noncompact clusters w
a small number of self-intersections. Here, the sites that
enclosed with occupied sites on all sides~i.e., internal sites
of a cluster! will not contribute to the functiong1(s). We
define the quantityV as the ratio of the number of cluste
sites sb , which have one or more vacant neighbor, to t
total number of sites in the cluster:V5sb /s. Along with a
cluster perimeter, this quantity is a measure of the clu
surface. Ass is large, we suppose that the sites that contr
ute to g1(s) are characterized by approximately equ
contributions.1 Then, taking into account Eq.~18!, we have

as11
(s11)'

g1~s11!

V
. ~29!

Substituting Eq.~29! into ~20! and carrying out simple math
ematical transformations, we obtain the following equatio

dg1

ds
'

h

s2h
g1~s!2

u

s2h
, ~30!

where h5(1/V)21. For compact clustersh.1 while for
noncompact ones with small number of self-intersectionh
→0 andh50 for clusters without self-intersections.

The boundary condition for Eq.~30! is similar to condi-
tion ~25! for Eq. ~23!: g1us5s0

5C08 . Solution of Eq.~30! for

fixed h can be written as follows:

g1~s!'S s02h

s2h D hH C081
u

h F S s2h

s02h D h

21G J . ~31!

Taking into account Eqs.~10!, ~13!, ~14!–~16!, and ~31!
along with the relationship limh→0(12x2h)/h5 ln x, fol-
lowing expression for the case of small number of se
intersections can be written:

ns~p!'C18s
2t expS 2

s12h

sj
D $11O~s2u!%, ~32!

whereC18 is constant andsj is the same as in Eq.~28!.

D. Compact clusters

Let us consider the case of compact clusters using
drop model. ThenV'A(s11)21/d and h'1/A(s11)1/d

21, whered is the spatial dimension andA52pd/2/G(d/2)
is the surface area of a sphere of a unit radius
d-dimensional space. Then Eq.~30! takes the following
form:

1We may assume that each cluster site makes a contribution t
function g1(s) and this contribution is proportional to the numb
of the vacant sites adjacent to the given site. Unfortunately,
additional assumption does not give anything new since additio
information about the structure of finite clusters is necessary
using it.
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dg1

ds
'

1

A
~s11!1/d21

s112
1

A
~s11!1/d

g1~s!2
u

s112
1

A
~s11!1/d

.

~33!

Equation ~33! is solved approximately with the boundar
condition ~24! for subcritical dimensionalities of the spac
d52 to 5. Generalizing the obtained solutions the followi
expression forg1(s) can be written:

g1~s!'Aus21/d1
~d21!A2u

d
s22/d1O~s23/d!. ~34!

Then from Eqs.~10!, ~13!, ~14!–~16!, and~34! for ns(p) we
have

ns~p!'C19s
2t expS 2

s(d21)/d

sj
2

A~d21!

d

s(d22)/d

sj
D ,

~35!

whereC19 is constant andsj is the same as in Eq.~28!.
It follows from expressions~26!, ~32!, and ~35! that for

fixed p and larges the number of clusters with a greaterV
will be smaller in comparison with the number of clusters
the same size but having a smallerV. Hence, in supercritica
percolation the majority of large finite clusters located on
lattice will be compact, and the cluster size distribution w
be determined only by expression~35!. It should be noted
that Eq. ~35! without the second term in the exponenti
function is a widely used empirical expression for the clus
size distribution in supercritical percolation@1,16#. This re-
sult agrees also with the results of numerical experime
@17# and the exact inequalities are proven in Ref.@18#.

V. NUMERICAL SIMULATION

To verify the predictions of the preceding section, Mon
Carlo simulation for a site problem has been carried out o
periodic 2D square lattices with sizesN51002 and 10002 for
p50.59 274 621~the percolation threshold@19#!, 0.60, 0.62,
and 0.64, and on 3D simple cubic lattices with sizesN
5503 and 1003 for p50.3 116 080~the percolation threshold
@20#!, 0.320 and 0.340. The boundary conditions for all t
lattices are free. For each combination of (N,p) from 2
3105 to 23107 histories were treated. The central pr
cessing unit time on a dual-processor Pentium III compu
with 800 MHz processors was about 2500 h.

For numerical simulation, the well-known Hoshe
Kopelman cluster-labeling algorithm@21# has been modified
It was supplemented with the possibility of calculating n
only the size of any cluster but also the number of sites w
one or more vacant neighbors, i.e., of determining the qu
tity V. It turned out that this value fors@1 lies in a narrow
range~Fig. 2!. Thus, for a 2D square latticeV50.82–0.86 at
p50.60 and, respectively,h50.78–0.84 in Eq.~32!. This
indicates that the occurrence of large clusters with
branched surface is a rare event for supercritical percolat
This result agrees with works@22#, where it has been show
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that the perimeter distribution function narrows to ad func-
tion if s→`. All the aforesaid confirms the conclusions
Sec. IV about the cluster size distribution law.

To verify formula ~32! Monte Carlo simulations have
been carried out on a 2D square lattice. For this purpose
quantityV is divided into 100 equal parts. For example, t
valueV50.78 is assigned to all the clusters for whichV lies
in the range 0.7860.005. The results of simulations are pr
sented in Fig. 3. It can be seen from the Fig. 3 that
behavior predicted by formula~32! is the case.

The fact that all large clusters are characterized by
sameV for fixed p allowed us to use the standard Hoshe
Kopelman algorithm for verifying Eq.~35!. It should be
noted that in the two-dimensional case the last term in
exponential function of Eq.~35! is independent ofs. There-
fore, the cluster size distribution should be linear in the f

FIG. 2. Number of clusters per site as function of their sizes
values ofV on a two-dimensional square lattice forp50.60 and
N51002.

FIG. 3. Verification of the behavior of the cluster sizes predic
by Eq. ~32! as plot of ln@ns(p,V)/ns(pc ,V)# versuss12h ~ whereh
5(1/V)21), for differentV. For solid curvesp50.60, for dashed
curvesp50.64.
01612
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lowing coordinates: abscissa s1/2 and ordinate
ln@ns(p)/ns(pc)#. Results of Monte Carlo simulation for squa
lattices of various sizes are presented in Fig. 4, where it
be seen that the linear dependence in these coordinates r
takes place. As is seen from Fig. 4, the straight lines co
sponding to the samep but different lattice sizesL differ
~approximately twice in logarithmic scale!. Estimating the
scaling effects for the investigated problem we have fou
that these effects can introduce an error that is not more
1–2%. Really, the displacement of a percolation threshold
the lattice of finite sizeL has the order ofupc(L)2pc(`)u
;1/Ln. In the case of exponential dependence of clus
numbers on a cluster size@Eq. ~35!# the correction on scaling
~in logarithmic scale! is D$ ln@ns(p)/ns(pc)#%;sjL2D. For
investigated lattice sizes (L;102–103) and cluster sizes (s
;102–103) the upper estimation for this cor-

d

d

FIG. 4. Verification of the cluster decay law~35! for a 2D square
lattice as plot of ln@ns(p)/ns(pc)# versuss1/2. For solid curvesN
510002, for dashed curvesN51002.

FIG. 5. Verification of the cluster decay law~35! for a simple
3D cubic lattice as a plot of ln@ns(p)/ns(pc)# versus s2/3

1(8p/3)s1/3. For solid curves N51003, for dashed curves
N5503.
4-6
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rection is 1–2%. The discrepancy between the numer
data for various sizes of a lattice is explained by a sm
absolute value of cluster numbers for larges @16#. Thus, for
number of histories;107 an absolute error of determinatio
of cluster numbers is;1024–1025. For larges this error is
comparable to cluster numbers. For moderat
s (;100–300! the relative errors are 10–20%, and for lar
s (;1000) they reach 50–100%. It should be noted tha
spite of a large relative error, the linear dependence of a
age cluster numbers in coordinates mentioned does
place.

In the case of three-dimensional lattices, the second t
in Eq. ~35! is no longer constant. In the range of the clust
sizess;103–104 the second term is comparable with th
first one in the order of magnitude. To verify relationsh
~35! for a simple 3D cubic lattice, we also plot the clust
size distribution in special coordinates: the abscissas2/3

1(8p/3)s1/3 and the ordinate ln@ns(p)/ns(pc)#. As is seen
from Fig. 5, there is a linear dependence for the cluster
distribution in the mentioned coordinates at differentp and
N. It should be noted that here better consistency with
01612
al
ll

y

n
r-
ke

m
s

e

e

linear dependences is observed than in the case of usings2/3

as the abscissa for the aforementioned distribution.

VI. CONCLUSION

In this paper, the statistical behavior of the sizes of la
finite clusters for supercritical percolation has been cons
ered. It is demonstrated once again that the cluster surfa
of primary importance for the cluster behavior. The su
gested approach has allowed us to consider from the gen
point of view such a characteristic of a percolation system
the cluster size distribution above the percolation thresh
The next logical step in this direction should consist in t
replacement of the drop model for compact clusters wit
more realistic model. We suppose that further developm
of this approach will allow better understanding and solvi
a number of problems of the percolation theory.
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